Facile preparation of flame-retardant cellulose composite with biodegradable and water resistant properties for electronic device applications

Sci Rep. 2023 Feb 23;13(1):3168. doi: 10.1038/s41598-023-30078-0.

Abstract

The aim of the present study is to produce flexible, flame-retardant, water-resistant and biodegradable composite materials. The ultimate goal of this research is to develop simple processes for the production of bio-based materials capable of replacing non-degradable substrates in printed circuit board. Cellulose was chosen as a renewable resource, and dissolved in 1-ethyl-3-methylimidazolium acetate ionic liquid to prepare a cellulosic continuous film. Since flame retardancy is an important criterion for electronic device applications and cellulose is naturally flammable, we incorporated ammonium polyphosphate (APP) as a flame-retardant filler to increase the flame retardancy of the produced materials. The developed material achieved a UL-94 HB rating in the flammability test, while the cellulose sample without APP failed the test. Two hydrophobic agents, ethyl 2-cyanoacrylate and trichloro(octadecyl)silane were applied by a simple dip-coating technique to impart hydrophobicity to the cellulose-APP composites. Dynamic mechanical analysis indicated that the mechanical properties of the cellulosic materials were not significantly affected by the addition of APP or the hydrophobic agents. Moreover, the biodegradability of the cellulosic materials containing APP increased owing to the presence of the cellulase enzyme. The hydrophobic coating slightly decreased the biodegradability of cellulose-APP, but it was still higher than that of pure cellulose film.