The antihyperglycemic and hypolipidemic activities of a sulfur-oxidovanadium(IV) complex

J Inorg Biochem. 2023 Apr:241:112127. doi: 10.1016/j.jinorgbio.2023.112127. Epub 2023 Jan 27.

Abstract

This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.

Keywords: Antidiabetic; Diabetes mellitus; Hypolipidemic; Insulin-like; Oxidovanadium(IV) complex; S(2)O(2) coordination mode.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose
  • Diabetes Mellitus, Experimental*
  • Hypoglycemic Agents* / pharmacology
  • Rats
  • Rats, Wistar
  • Vanadium / chemistry

Substances

  • Hypoglycemic Agents
  • Blood Glucose
  • 5,7,11,13-octadecatrayne-1,18-diol
  • Vanadium