Improved topographic reconstruction of turbid media in the spatial frequency domain including the determination of the reduced scattering and absorption coefficients

J Opt Soc Am A Opt Image Sci Vis. 2023 Feb 1;40(2):294-304. doi: 10.1364/JOSAA.476733.

Abstract

The separation of scattering and absorption is of great importance for studying the radiative transfer in turbid media. Obtaining the corresponding coefficients for non-flat objects is difficult and needs special consideration. Building on our previous work [J. Opt. Soc. Am. A39, 1823 (2022)JOAOD60740-323210.1364/JOSAA.464007], we present an approach that takes the changing incident and detection angles relative to the surface normal of curved surfaces into account to improve the determination of the reduced scattering and absorption coefficients with measurements in the spatial frequency domain (SFD). The optical coefficients are reconstructed using a pre-calculated lookup table generated with Monte Carlo simulations on graphical processing units. With the obtained values, the error in the captured surface geometry of the object, which is due to the volume scattering, is compensated and reduced by 1 order of magnitude for measurements in the SFD. Considering the approximate surface geometry, the absorption and reduced scattering are accurately resolved for moderate object curvatures, with very low dependence on the tilt angle. In contrast to models that only correct the amplitudes of the SFD signal, our approach, in addition to the optical properties, predicts the phase values correctly, which is the reason why it can be used to correct the surface geometry.