Substantial warming of Central European mountain rivers under climate change

Reg Environ Change. 2023;23(1):43. doi: 10.1007/s10113-023-02037-y. Epub 2023 Feb 18.

Abstract

Water bodies around the world are currently warming with unprecedented rates since observations started, but warming occurs highly variable among ecoregions. So far, mountain rivers were expected to experience attenuated warming due to cold water input from snow or ice. However, air temperatures in mountain areas are increasing faster than the global average, and therefore warming effects are expected for cold riverine ecosystems. In decomposing multi-decadal water temperature data of two Central European mountain rivers with different discharge and water source regime, this work identified so far unreported (a) long-term warming trends (with river-size dependent rates between +0.24 and +0.44 °C decade-1); but also (b) seasonal shifts with both rivers warming not only during summer, but also in winter months (i.e., up to +0.52 °C decade-1 in November); (c) significantly increasing minimum and maximum temperatures (e.g., temperatures in a larger river no longer reach freezing point since 1996 and maximum temperatures increased at rates between +0.4 and +0.7 °C decade-1); and (d) an expanding of warm-water periods during recent decades in these ecosystems. Our results show a substantial warming effect of mountain rivers with significant month-specific warming rates not only during summer but also in winter, suggesting that mountain river phenology continues to change with ongoing atmospheric warming. Furthermore, this work demonstrates that apart from a general warming, also seasonal shifts, changes in extreme temperatures, and expanding warm periods will play a role for ecological components of mountain rivers and should be considered in climate change assessments and mitigation management.

Supplementary information: The online version contains supplementary material available at 10.1007/s10113-023-02037-y.

Keywords: Heat periods; Long-term warming; Maximum temperature; Minimum temperature; Water.