Exploring three-body fragmentation of acetylene trication

J Chem Phys. 2023 Feb 21;158(7):074302. doi: 10.1063/5.0135441.

Abstract

The three-body breakup of [C2H2]3+ formed in collision with Xe9+ moving at 0.5 atomic units of velocity is studied by using recoil ion momentum spectroscopy. Three-body breakup channels leading to (H+, C+, CH+) and (H+, H+, C2 +) fragments are observed in the experiment and their kinetic energy release is measured. The breakup into (H+, C+, CH+) occurs via concerted and sequential modes, whereas the breakup into (H+, H+, C2 +) shows only the concerted mode. By collecting events coming exclusively from the sequential breakup leading to (H+, C+, CH+), we have determined the kinetic energy release for the unimolecular fragmentation of the molecular intermediate, [C2H]2+. By using ab initio calculations, the potential energy surface for the lowest electronic state of [C2H]2+ is generated, which shows the existence of a metastable state with two possible dissociation pathways. A discussion on the agreement between our experimental results and these ab initio calculations is presented.