Flow development and leading edge vorticity in bristled insect wings

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Mar;209(2):219-229. doi: 10.1007/s00359-023-01617-x. Epub 2023 Feb 22.

Abstract

Small flying insects such as the tiny thrip Gynaikothrips ficorum have wings with bristles attached to a solid shaft instead of solid membranes. Air passing through the bristle fringe, however, makes bristled insect wings less effective for aerodynamic force production. In this study, we quantified the ability of bristled wings to generate a leading edge vortex (LEV) for lift support during wing flapping, scored its circulation during wing translation, and investigated its behaviour at the stroke reversals. The data were measured in robotic model wings flapping with a generic kinematic pattern at Reynolds number of ~ 3.4, while applying two-dimensional particle image velocimetry. We found that aerodynamic performance due to LEV circulation linearly decreases with increasing bristle spacing. The wings of Gynaikothrips ficorum might thus produce approximately 9% less aerodynamic force for flight than a solid membranous wing. At the stroke reversals, leading and trailing edge vortices dissipate quickly within no more than ~ 2% of the stroke cycle duration. This elevated dissipation makes vortex shedding obsolete during the reversals and allows a quick build-up of counter-vorticity when the wing reverses flapping direction. In sum, our findings highlight the flow conditions associated with bristled wing design in insects and are thus significant for assessing biological fitness and dispersal of insects flying in a viscosity-dominated fluid regime.

Keywords: Bristled wings; Insect flight; Leading edge vortex; Particle image velocimetry; Unsteady aerodynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena / physiology
  • Flight, Animal / physiology
  • Insecta / physiology
  • Models, Biological*
  • Wings, Animal* / physiology