Evaluation of high-protein diets differing in protein source in healthy adult dogs

J Anim Sci. 2023 Jan 3:101:skad057. doi: 10.1093/jas/skad057.

Abstract

Given the dynamic market for protein-based ingredients in the pet food industry, demand continues to increase for both plant- and animal-based options. Protein sources contain different amino acid (AA) profiles and vary in digestibility, affecting protein quality. The objective of this study was to evaluate the apparent total tract digestibility (ATTD) of canine diets differing in protein source and test their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs consuming them. Four extruded diets were formulated to be isonitrogenous and meet the nutrient needs for adult dogs at maintenance, with the primary difference being protein source: 1) fresh deboned, dried, and spray-dried chicken (DC), 2) chicken by-product meal (CBPM), 3) wheat gluten meal (WGM), and 4) corn gluten meal (CGM). Twelve adult spayed female beagles (body weight [BW] = 9.9 ± 1.0 kg; age = 6.3 ± 1.1 yr) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). Each period consisted of a 22-d adaptation phase, 5 d for fecal collection, and 1 d for blood collection. Fecal microbiota data were analyzed using QIIME 2.2020.8. All other data were analyzed using the Mixed Models procedure of SAS version 9.4. Fecal scores were higher (P < 0.05; looser stools) in dogs fed DC or CBPM than those fed WGM or CGM, but all remained within an appropriate range. Dry matter ATTD was lower (P < 0.05) in dogs fed CBPM or CGM than those fed DC or WGM. Crude protein ATTD was lower (P < 0.05) in dogs fed DC or CGM than those fed WGM. Dogs fed CBPM had lower (P < 0.05) organic matter, crude protein, and energy ATTD than those fed the other diets. Fecal indole was higher (P < 0.05) in dogs fed CBPM than those fed WGM. Fecal short-chain fatty acids were higher (P < 0.05) in dogs fed DC than those fed CGM. Fecal branched-chain fatty acids were higher (P < 0.05) in dogs fed DC or CBPM than those fed WGM. Fecal ammonia was higher (P < 0.05) in dogs fed DC or CBPM than those fed WGM or CGM. The relative abundances of three bacterial phyla and nine bacterial genera were shifted among treatment groups (P < 0.05). Considering AA profiles and digestibility data, the DC diet protein sources provided the highest quality protein without additional AA supplementation, but the animal-based protein diets resulted in higher fecal proteolytic metabolites. Further studies evaluating moderate dietary protein concentrations are needed to better compare plant- and animal-based protein sources.

Keywords: animal; based protein; canine nutrition; fecal microbiome; nutrient digestibility; plant; protein quality.

Plain language summary

Pet food trends are constantly changing. Because consumers are often focused on dietary proteins, with ingredient sources, dietary inclusion levels, and processing methods being important, they are a popular research topic. Protein sources contain different amino acid (AA) profiles and vary in digestibility, affecting protein quality. Our objective was to evaluate the apparent total tract digestibility of canine diets differing in protein source and test their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Test diets were formulated to be similar nutritionally, but differed in protein source: fresh deboned, dried, and spray-dried chicken (DC), chicken by-product meal (CBPM), wheat gluten meal (WGM), and corn gluten meal (CGM). Fecal scores were higher in dogs fed chicken-based diets, but remained within an appropriate range. Dogs fed CBPM had lower nutrient and energy digestibilities than those fed the other diets, with protein digestibility also being lower in dogs fed DC or CGM than those fed WGM. Fecal metabolites and microbiota were shifted among diets, with animal-based protein diets increasing fecal protein metabolites. All diets were complete and balanced and performed well. When considering AA profiles and digestibility, however, the DC diet provided the highest protein quality.

MeSH terms

  • Amino Acids / metabolism
  • Animal Feed / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Diet / veterinary
  • Diet, High-Protein* / veterinary
  • Digestion*
  • Dogs
  • Feces / chemistry
  • Glutens / analysis

Substances

  • Amino Acids
  • Glutens