An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN

Biomed Tech (Berl). 2023 Feb 17;68(3):317-327. doi: 10.1515/bmt-2022-0354. Print 2023 Jun 27.

Abstract

Objectives: Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.

Methods: Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.

Results: The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.

Conclusions: The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.

Keywords: EEG; FLDANN; domain adaptation; inter-subject; mental fatigue; multi-source domain.

MeSH terms

  • Calibration
  • Electroencephalography*
  • Humans
  • Mental Fatigue* / diagnosis
  • Neural Networks, Computer