The Genetic Requirements for HiVir-Mediated Onion Necrosis by Pantoea ananatis, a Necrotrophic Plant Pathogen

Mol Plant Microbe Interact. 2023 Jun;36(6):381-391. doi: 10.1094/MPMI-11-22-0246-R. Epub 2023 Jun 28.

Abstract

Pantoea ananatis is an unusual bacterial pathogen that lacks typical virulence determinants yet causes extensive necrosis in onion foliage and bulb tissues. The onion necrosis phenotype is dependent on the expression of the phosphonate toxin, pantaphos, which is synthesized by putative enzymes encoded by the HiVir (high virulence) gene cluster. The genetic contributions of individual hvr genes in HiVir-mediated onion necrosis remain largely unknown, except for the first gene, hvrA (phosphoenolpyruvate mutase, pepM), whose deletion resulted in the loss of onion pathogenicity. In this study, using gene-deletion mutation and complementation, we report that, of the ten remaining genes, hvrB to hvrF are also strictly required for the HiVir-mediated onion necrosis and in-planta bacterial growth, whereas hvrG to hvrJ partially contributed to these phenotypes. As the HiVir gene cluster is a common genetic feature shared among the onion-pathogenic P. ananatis strains that could serve as a useful diagnostic marker of onion pathogenicity, we sought to understand the genetic basis of HiVir-positive yet phenotypically deviant (non-pathogenic) strains. We identified and genetically characterized inactivating single nucleotide polymorphisms in the essential hvr genes of six phenotypically deviant P. ananatis strains. Finally, inoculation of cell-free spent medium of the isopropylthio-β-galactoside (IPTG)-inducible promoter (Ptac)-driven HiVir strain caused P. ananatis-characteristic red onion scale necrosis as well as cell death symptoms in tobacco. Co-inoculation of the spent medium with essential hvr mutant strains restored in-planta populations of the strains to the wild-type level, suggesting that necrotic tissues are important for the proliferation of P. ananatis in onion. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Keywords: HiVir; Pantoea ananatis; necrotroph; onion; phosphonate; secondary metabolite; specialized metabolite; toxin.

MeSH terms

  • Necrosis
  • Onions* / microbiology
  • Pantoea* / genetics
  • Plant Diseases / microbiology
  • Plants

Supplementary concepts

  • Pantoea ananatis