Treatment with semaglutide, a GLP-1 receptor agonist, improves extracellular matrix remodeling in the pancreatic islet of diet-induced obese mice

Life Sci. 2023 Apr 15:319:121502. doi: 10.1016/j.lfs.2023.121502. Epub 2023 Feb 14.

Abstract

Aims: The extracellular matrix (ECM) is fundamental for the normal endocrine functions of pancreatic islet cells and plays key roles in the pathophysiology of type 2 diabetes. Here we investigated the turnover of islet ECM components, including islet amyloid polypeptide (IAPP), in an obese mouse model treated with semaglutide, a glucagon-like peptide type 1 receptor agonist.

Main methods: Male one-month-old C57BL/6 mice were fed a control diet (C) or a high-fat diet (HF) for 16 weeks, then treated with semaglutide (subcutaneous 40 μg/kg every three days) for an additional four weeks (HFS). The islets were immunostained and gene expressions were assessed.

Key findings: Comparisons refer to HFS vs HF. Thus, IAPP immunolabeling and beta-cell-enriched beta-amyloid precursor protein cleaving enzyme (Bace2, -40 %) and heparanase immunolabeling and gene (Hpse, -40 %) were mitigated by semaglutide. In contrast, perlecan (Hspg2, +900 %) and vascular endothelial growth factor A (Vegfa, +420 %) were enhanced by semaglutide. Also, semaglutide lessened syndecan 4 (Sdc4, -65 %) and hyaluronan synthases (Has1, -45 %; Has2, -65 %) as well as chondroitin sulfate immunolabeling, and collagen type 1 (Col1a1, -60 %) and type 6 (Col6a3, -15 %), lysyl oxidase (Lox, -30 %) and metalloproteinases (Mmp2, -45 %; Mmp9, -60 %).

Significance: Semaglutide improved the turnover of islet heparan sulfate proteoglycans, hyaluronan, chondroitin sulfate proteoglycans, and collagens in the islet ECM. Such changes should contribute to restoring a healthy islet functional milieu and should reduce the formation of cell-damaging amyloid deposits. Our findings also provide additional evidence for the involvement of islet proteoglycans in the pathophysiology of type 2 diabetes.

Keywords: Beta-cell; Heparanase; Islet amyloid polypeptide; Perlecan; Syndecan.

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2* / drug therapy
  • Diabetes Mellitus, Type 2* / metabolism
  • Diet
  • Extracellular Matrix / metabolism
  • Glucagon-Like Peptide-1 Receptor / metabolism
  • Glucagon-Like Peptides / pharmacology
  • Islet Amyloid Polypeptide / genetics
  • Islet Amyloid Polypeptide / metabolism
  • Islet Amyloid Polypeptide / pharmacology
  • Islets of Langerhans* / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Vascular Endothelial Growth Factor A
  • semaglutide
  • Glucagon-Like Peptide-1 Receptor
  • Glucagon-Like Peptides
  • Islet Amyloid Polypeptide