Approaching Molecular Definition on Oxide-Supported Single-Atom Catalysts

Acc Chem Res. 2023 Mar 7;56(5):561-572. doi: 10.1021/acs.accounts.2c00728. Epub 2023 Feb 16.

Abstract

ConspectusSingle-atom catalysts (SACs) offer unique advantages such as high (noble) metal utilization through maximum possible dispersion, large metal-support contact areas, and oxidation states usually unattainable in classic nanoparticle catalysis. In addition, SACs can serve as models for determining active sites, a simultaneously desired as well as elusive target in the field of heterogeneous catalysis. Due to the complexity of heterogeneous catalysts bearing a variety of different sites on metal particles and the respective support as well as at their interface, studies of intrinsic activities and selectivities remain largely inconclusive. While SACs could close this gap, many supported SACs remain intrinsically ill-defined due to complexities arising from the variety of different adsorption sites for atomically dispersed metals, hampering the establishment of meaningful structure-activity correlations. In addition to overcoming this limitation, well-defined SACs could even be utilized to shed light on fundamental phenomena in catalysis that remain ambiguous when studies are obscured by the complexity of heterogeneous catalysts.In this Account, we describe approaches to break down the complexity of supported single-atom catalysts through the careful choice of oxide supports with specific binding motives as well as the adsorption of well-defined ligands such as ionic liquids on single metal sites. An example of molecularly defined oxide supports is polyoxometalates (POMs), which are metal oxo clusters with precisely known composition and structure. POMs exhibit a limited number of sites to anchor atomically dispersed metals such as Pt, Pd, and Rh. Polyoxometalate-supported single-atom catalysts (POM-SACs) thus represent ideal systems for the in situ spectroscopic study of single atom sites during reactions as, in principle, all sites are identical and thus equally active in catalytic reactions. We have utilized this benefit in studies of the mechanism of CO and alcohol oxidation reactions as well as the hydro(deoxy)genation of various biomass-derived compounds. More so, the redox properties of polyoxometalates can be finely tuned by changing the composition of the support while keeping the geometry of the single-atom active site largely constant. We further developed soluble analogues of heterogeneous POM-SACs, opening the door to advanced liquid-phase nuclear magnetic resonance (NMR) and UV-vis techniques but, in particular, to electrospray ionization mass spectrometry (ESI-MS) which proves powerful in determining catalytic intermediates as well as their gas-phase reactivity. Employing this technique, we were able to resolve some of the long-standing questions about hydrogen spillover, demonstrating the broad utility of studies on defined model catalysts.