Intermolecular energy transfer-enhanced super-broadband stimulated Raman scattering in cyclohexane-benzene mixtures

J Chem Phys. 2023 Feb 14;158(6):064302. doi: 10.1063/5.0137238.

Abstract

Supercontinuum radiation has found numerous applications in diverse fields encompassing spectroscopy, pulse compression, and tunable laser sources. Anomalous enhanced stimulated Raman scattering (SRS) of cyclohexane-benzene mixtures was obtained in this study. SRS of the pure solvent, the multi-order Stokes of the strongest fundamental vibration modes, and energy transfer in intra-molecular modes were observed. SRS of the mixture revealed that the cross-pumping effect was generated between the C-H stretching (v2) mode of cyclohexane and the C=C ring skeleton (v1) mode of benzene, thereby producing the intermolecular secondary stimulated Raman emission and the appearance of two super-broadband radiations at 664.36-673.9 nm and 704.62-729.22 nm. The results suggest that the energy transfer of intermolecular vibrational modes, where the strongest vibrational mode excites other vibrational modes, is a simple approach for generating supercontinuum coherent radiation.