Performance improvement of coherent optical chaos communication using probabilistic shaping

Opt Lett. 2023 Feb 15;48(4):1008-1011. doi: 10.1364/OL.482901.

Abstract

We numerically investigate the effects of probabilistic shaping on the performance improvement of coherent optical chaos communication. Results show that the decryption bit-error ratio (BER) of the 16-ary quadrature amplitude modulation (QAM) signal decreases upon increasing the probabilistic shaping factor. It is predicted that the BER of 10-GBd 16QAM can be decreased by one order of magnitude. On the other hand, for the forward error correction threshold of the BER, the requirement for synchronization quality is no longer strict for successful decryption. This means that probabilistic shaping improves the system's tolerance to residual synchronization error. Thus, the transmission rate can be increased by approximately 30∼60%. The side effect of probabilistic shaping is that the valid masking coefficient range is narrowed.