Activity and abundance of methanotrophic bacteria in a northern mountainous gradient of wetlands

Environ Microbiol Rep. 2023 Jun;15(3):206-215. doi: 10.1111/1758-2229.13137. Epub 2023 Feb 14.

Abstract

Methane uptake and diversity of methanotrophic bacteria was investigated across six hydrologically connected wetlands in a mountainous forest landscape upstream of lake Langtjern, southern Norway. From floodplain through shrubs, forest and sedges to a Sphagnum covered site, growing season CH4 production was insufficiently consumed to balance release into the atmosphere. Emission increased by soil moisture ranging 0.6-6.8 mg CH4 m-2 h-1 . Top soils of all sites consumed CH4 including at the lowest 78 ppmv CH4 supplied, thus potentially oxidizing 17-51 nmol CH4 g-1 dw h-1 , with highest Vmax 440 nmol g-1 dw h-1 under Sphagnum and lowest Km 559 nM under hummocked Carex. Nine genera and several less understood type I and type II methanotrophs were detected by the key functional gene pmoA involved in methane oxidation. Microarray signal intensities from all sites revealed Methylococcus, the affiliated Lake Washington cluster, Methylocaldum, a Japanese rice cluster, Methylosinus, Methylocystis and the affiliated Peat264 cluster. Notably enriched by site was a floodplain Methylomonas and a Methylocapsa-affiliated watershed cluster in the Sphagnum site. The climate sensitive water table was shown to be a strong controlling factor highlighting its link with the CH4 cycle in elevated wetlands.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Methane
  • Methylococcaceae* / genetics
  • Oxidation-Reduction
  • Soil
  • Soil Microbiology
  • Wetlands*

Substances

  • Soil
  • Methane