High-resolution molecular fingerprinting in the 11.6-15 µm range by a quasi-CW difference-frequency-generation laser source

Opt Express. 2023 Jan 30;31(3):4164-4178. doi: 10.1364/OE.480107.

Abstract

We report an approach for high-resolution spectroscopy using a widely tunable laser emitting in the molecular fingerprint region. The laser is based on difference-frequency generation (DFG) in a nonlinear orientation-patterned GaAs crystal. The signal laser, a CO2 gas laser, is operated in a kHz-pulsed mode while the pump laser, an external-cavity quantum cascade laser, is finely mode-hop-free tuned. The idler radiation covers a spectral range of ∼11.6-15 µm with a laser linewidth of ∼ 2.3 MHz. We showcase the versatility and the potential for molecular fingerprinting of the developed DFG laser source by resolving the absorption features of a mixture of several species in the long-wavelength mid-infrared. Furthermore, exploiting the wide tunability and resolution of the spectrometer, we resolve the broadband absorption spectrum of ethylene (C2H4) over ∼13-14.2 µm and quantify the self-broadening coefficients of some selected spectral lines.