Construction of an electrochemical sensor towards environmental hazardous 4-nitrophenol based on Nd(OH)3-embedded VSe2 nanocomposite

Environ Sci Pollut Res Int. 2023 Feb 13. doi: 10.1007/s11356-023-25688-0. Online ahead of print.

Abstract

The toxicity of 4-nitrophenol (4-NP) is one of the most common threats to the environment; therefore, developing a simple and sensitive analytical method to detect 4-NP is crucial. In this study, we prepared the Nd(OH)3/VSe2 nanocomposite using the simple hydrothermally assisted ultrasonication method and it was used to detect the 4-NP. Different characterization techniques were used to investigate the morphological and chemical compositions of Nd(OH)3/VSe2 nanocomposite. All of these investigations revealed that Nd(OH)3 nanoparticles were finely dispersed on the surface of the VSe2 nanosheet. The electrical conductivity of our prepared samples was evaluated by the electrochemical impedance spectroscopic technique. The CV and DPV methods were used to explore the electrochemical activity of 4-NP at the Nd(OH)3/VSe2/GCE sensor which exhibited a wide linear range (0.001 to 640 µM), low limit of detection (0.008 µM), and good sensitivity (0.41 µA µM-1 cm-2), respectively. Additionally, Nd(OH)3/VSe2/GCE sensor was tested in water samples for the detection of 4-NP, which exhibited good recovery results. The Nd(OH)3/VSe2 electrode material is a novel one for the electrochemical sensor field, and the obtained overall results also proved that our proposed material is an active material for sensor applications.

Keywords: Cyclic voltammetry; Hydrothermal; Organic pollutant; Rare earth metal hydroxide; Transition metal dichalcogenide.