Numerical Simulation on the Hydrogen Storage Performance of Magnesium Hydrogen Storage Reactors

ACS Omega. 2023 Jan 23;8(5):4586-4596. doi: 10.1021/acsomega.2c03484. eCollection 2023 Feb 7.

Abstract

Magnesium hydride (MH) is one of the most promising hydrogen storage materials. Under the hydrogen storage process, it will emit a large amount of heat, which limits the efficiency of the hydrogen storage reaction. In this paper, the hydrogen storage performance of the magnesium hydrogen storage reactor (MHSR) and the effect of structural parameters were studied by numerical simulation. The effect of different operating conditions on the hydrogen storage performance of the MHSR is analyzed. The volume energy storage rate (VESR) was taken as the comprehensive evaluation index (CEI). The results show that fins and heat exchange tubes can improve the heat transfer performance of the MHSR. Increasing fin thickness can reduce hydrogen storage time, but increasing fin spacing is the opposite. With the increase of fin thickness and fin spacing, VESR increases first and then decreases. With the increase of inlet temperature, the hydrogen storage time decreases first and then increases. When the inlet velocity is more than 5 m/s, the hydrogen storage time basically stays at 900 s. By optimizing the operating conditions, the hydrogen storage time can be shortened by 57.8%.