The MyoPulser field stimulator, a do it yourself programmable electronic pacemaker for contracting cells and tissues

Sci Rep. 2023 Feb 11;13(1):2461. doi: 10.1038/s41598-023-29145-3.

Abstract

After providing the free software MYOCYTER that analyzes a large amount of data from videos of contracting cells, tissues or organs, we now present an "Arduino"-based programmable, customizable and cost-effective electronic pacemaker ("MyoPulser") that triggers contraction by electric stimulation of the sample at arbitrary frequencies. In this work, construction, functions and application of the MyoPulser are explained in detail, the electronic pacemaker is also tested on isolated cardiomyocytes and HT22-cells to quantify biological effects of pacing. The device enables the user to select between different pulse types (monophasic, alternating, bi- and polyphasic) adjust the length of an applied pulse (1-200 ms), the gap between two consecutive pulses (20-2000 ms), application of irregular pulses with random length and gaps (simulation of arrhythmia) in a user-defined range, as well as manual pulsing, while extensive data are recorded for every single pulse during the experiment. Electrostimulation of isolated B6 cardiomyocytes showed very little deviation of the observed cellular contraction from the applied pulse settings of the device, while the carbon electrodes used proved to be biologically inert in long-term experiments. Due to the open source code and the expandable setup, the MyoPulser can be easily adapted to even highly specific requirements and together with the software MYOCYTER it represents a complete cardiomyophysiological measuring station.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Electronics
  • Myocytes, Cardiac
  • Pacemaker, Artificial*
  • Software*