Ultra-Responsive MEMS Sensing Chip for Differential Thermal Analysis (DTA)

Sensors (Basel). 2023 Jan 26;23(3):1362. doi: 10.3390/s23031362.

Abstract

Ultra-responsive single-crystal silicon MEMS thermopiles for differential thermal analysis (DTA) are developed. Facilitated by a unique "microholes interetch and sealing (MIS)" technique, pairs of suspended thermopiles are batch fabricated in a differential form, with high-density (54 pairs) n-type/p-type single-crystal silicon thermocouples integrated within each thermopile (sample area ~0.045 mm2). The fabricated MEMS thermopile sensors exhibit outstanding power responsivity of 99.5 V/W and temperature responsivity of 27.8 mV/°C, which are more than 4 times higher than those reported for material thermal analysis. The high-responsivity MEMS DTA chips allow us to accurately measure the indium melting point at different heating rates of ~1-100 °C/s. We also perform DTA measurement of the dehydration process of CuSO4·5H2O and the crystals show three stages of losing water of crystallization before becoming anhydrous copper sulfate salt. Our high-performance, cost-effective MEMS sensing chips hold promise for rapid and accurate DTA characterization for a wide range of applications.

Keywords: DTA; MEMS thermopile; MIS process; differential thermal analysis; single-crystal silicon thermocouples.