An Efficient and Conditional Privacy-Preserving Heterogeneous Signcryption Scheme for the Internet of Drones

Sensors (Basel). 2023 Jan 17;23(3):1063. doi: 10.3390/s23031063.

Abstract

The Internet of Drones (IoD) is a network for drones that utilizes the existing Internet of Things (IoT) infrastructure to facilitate mission fulfilment through real-time data transfer and navigation services. IoD deployments, on the other hand, are often conducted in public wireless settings, which raises serious security and privacy concerns. A key source of these security and privacy concerns is the fact that drones often connect with one another through an unprotected wireless channel. Second, limits on the central processing unit (CPU), sensor, storage, and battery capacity make the execution of complicated cryptographic methods onboard a drone impossible. Signcryption is a promising method for overcoming these computational and security limitations. Additionally, in an IoD setting, drones and the ground station (GS) may employ various cryptosystems in a particular region. In this article, we offer a heterogeneous signcryption scheme with a conditional privacy-preservation option. In the proposed scheme, identity-based cryptography (IBC) was used by drones, while the public key infrastructure (PKI) belonged to the GS. The proposed scheme was constructed by using the hyperelliptic curve cryptosystem (HECC), and its security robustness was evaluated using the random oracle model (ROM). In addition, the proposed scheme was compared to the relevant existing schemes in terms of computation and communication costs. The results indicated that the proposed scheme was both efficient and secure, thereby proving its feasibility.

Keywords: HECC; Internet of Drones; privacy; security; signcryption.

Grants and funding

This research received no external funding.