Recent Advances in Poly(Ionic Liquid)-Based Membranes for CO2 Separation

Polymers (Basel). 2023 Jan 28;15(3):667. doi: 10.3390/polym15030667.

Abstract

Poly(ionic liquid)-based membranes have been the subject of intensive research in the last 15 years due to their potential for the separation of CO2 from other gases. In this short review, different types of PIL-based membranes for CO2 separation are described (neat PIL membranes; PIL-IL composite membranes; PIL-polymer blend membranes; PIL-based block copolymer membranes, and PIL-based mixed matrix membranes), and their state-of-the-art separation results for different gas pairs (CO2/N2, CO2/H2, and CO2/CH4) are presented and discussed. This review article is focused on the most relevant research works performed over the last 5 years, that is, since the year 2017 onwards, in the field of poly(ionic liquid)-based membranes for CO2 separation. The micro- and nano-morphological characterization of the membranes is highlighted as a research topic that requires deeper study and understanding. Nowadays there is an array of advanced structural characterization techniques, such as neutron scattering techniques with contrast variation (using selective deuteration), that can be used to probe the micro- and nanostructure of membranes, in length scales ranging from ~1 nm to ~15 μm. Although some of these techniques have been used to study the morphology of PIL-based membranes for electrochemical applications, their use in the study of PIL-based membranes for CO2 separation is still unknown.

Keywords: CO2 separation; flue gas; poly(ionic liquid) membranes; small-angle scattering techniques; structural and morphological characterization.

Publication types

  • Review

Grants and funding

G. Bernardo thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus Individual Call—(CEEC_IND/02039/2018). This work was financially supported by: LA/P/0045/2020 (ALiCE), UIDB/00511/2020 and UIDP/00511/2020 (LEPABE), funded by national funds through FCT/MCTES (PIDDAC); POCI-01-0247-FEDER-039926, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES.