Biological Assessment of Stevioside and Sucralose as Sucrose Substitutes for Diabetics on STZ-Induced Diabetes in Rats

Molecules. 2023 Jan 17;28(3):940. doi: 10.3390/molecules28030940.

Abstract

Numerous food organizations have identified excessive calorie consumption and accompanying ailments as significant health risks associated with high sugar consumption. Administering stevioside (ST), sucralose (SU), and the two synergically (SU+ST) affected normal rats' weight gain. In the current study, SU showed the highest undesired effect. Indeed, administering the three treatments to diabetic rats (DR) did not improve the rats' weight gain. Although, insulin injection synergically with the treatments improved the weight gain, as recorded after three weeks. The best-improving rate was observed in the ST group. After the administration of ST and ST+SU to the DR, the blood glucose level (GL) was positively affected, with SU having no effects on reducing the GL. A considerable reduction in serum insulin (SIL) was noted in the DR+SU group. On the contrary, ST did not negatively affect the SIL, rather an improvement was recorded. In addition, giving SU did not significantly affect the ALT level in the DR or normal rats (NR). A significant improvement in total bilirubin (TBILI) was observed when insulin was injected with ST or SU in DR groups. Further, triglycerides (TG) after administering ST, SU, or ST+SU to NR had no significant difference compared to the control group (NR). Although, the three treatments markedly but not significantly lowered TG in the DR. For total cholesterol (CHO), both DR and NR had no significant effect after the three treatments. No histopathological alterations were recorded in the NR group. Diffuse and severe atrophy of the islands of Langerhans due to depletion of their cells and mild papillary hyperplasia of the pancreatic ducts were represented by a slightly folded ductal basement membrane and newly formed ductules in STZ-DR. Simultaneous atrophy and absence of the cells of islands of Langerhans besides ductal hyperplasia were evident in DR+SU. Hyperplastic ductal epithelium and atrophic Langerhans cells were seen in DR+SU+In. Degeneration and mild atrophy were observed in the islands of Langerhans structures. There was essentially no noticeable change after utilizing ST. A slight shrinkage of the Langerhans' islets was detected in DR+ST. In DR+ST+In, no histopathological alterations in the islands of Langerhans were recorded. Congestion in the stromal blood vessels associated with degenerative and necrotic changes in the cells of the islands of Langerhans in DR+SU+ST was observed. In NR+SU, congestion of the blood vessels associated with mild atrophy in the islands of Langerhans and dilatation in stromal blood vessels was noticed. In conclusion, ST is safe, and SU should be taken cautiously, such as mixing with ST and/or taken at a very low concentration to avoid its drastic effect on the human body.

Keywords: biological evaluation; blood glucose monitoring; diabetes mellitus; dietary intake; histology; public health practice.

MeSH terms

  • Animals
  • Blood Glucose
  • Diabetes Mellitus, Experimental* / drug therapy
  • Diabetes Mellitus, Experimental* / pathology
  • Humans
  • Hyperplasia / pathology
  • Insulin
  • Insulin Resistance*
  • Islets of Langerhans*
  • Rats
  • Sucrose / pharmacology
  • Weight Gain

Substances

  • trichlorosucrose
  • stevioside
  • Blood Glucose
  • Sucrose
  • Insulin