Conservation of Major Satellite DNAs in Snake Heterochromatin

Animals (Basel). 2023 Jan 17;13(3):334. doi: 10.3390/ani13030334.

Abstract

Repetitive DNA sequences constitute a sizeable portion of animal genomes, and tandemly organized satellite DNAs are a major part of them. They are usually located in constitutive heterochromatin clusters in or near the centromeres or telomeres, and less frequently in the interstitial parts of chromosome arms. They are also frequently accumulated in sex chromosomes. The function of these clusters is to sustain the architecture of the chromosomes and the nucleus, and to regulate chromosome behavior during mitosis and meiosis. The study of satellite DNA diversity is important for understanding sex chromosome evolution, interspecific hybridization, and speciation. In this work, we identified four satellite DNA families in the genomes of two snakes from different families: Daboia russelii (Viperidae) and Pantherophis guttatus (Colubridae) and determine their chromosomal localization. We found that one family is localized in the centromeres of both species, whereas the others form clusters in certain chromosomes or subsets of chromosomes. BLAST with snake genome assemblies showed the conservation of such clusters, as well as a subtle presence of the satellites in the interspersed manner outside the clusters. Overall, our results show high conservation of satellite DNA in snakes and confirm the "library" model of satellite DNA evolution.

Keywords: Colubridae; Serpentes; Viperidae; centromere; repetitive DNA; sex chromosomes.