β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited

Appl Microbiol Biotechnol. 2023 Mar;107(5-6):1863-1874. doi: 10.1007/s00253-023-12413-7. Epub 2023 Feb 10.

Abstract

Pseudomonas putida KT2440 is a well-known model organism for the medium-chain-length (mcl) polyhydroxyalkanoate (PHA) accumulation. (R)-Specific enoyl-coenzyme A hydratase (PhaJ) was considered to be the main supplier of monomers for PHA synthesis by converting the β-oxidation intermediate, trans-2-enoyl-CoA to (R)-3-hydroxyacyl-CoA when fatty acids (FA) are used. Three PhaJ homologues, PhaJ1, PhaJ4 and MaoC, are annotated in P. putida KT2440. To investigate the relationship of fatty acids-PHA metabolism and the role of each PhaJ in PHA biosynthesis in P. putida KT2440, a series of P. putida KT2440 knockouts was obtained. PHA content and monomer composition in wild type (WT) and mutants under different growth conditions were analysed. PhaJ4 was the main monomer supplier for PHA synthesis with FA as sole carbon and energy source, with preference towards C8 and C10 substrate, whereas PhaJ1 showed preference for the C6 substrate. However, when all three PhaJ homologues were deleted, the mutant still accumulated PHA up to 10.7% of the cell dry weight (CDW). The deletion of (R)-3-hydroxydecanoyl-ACP:CoA transacylase (PhaG), which connects de novo FA and PHA synthesis pathways, while causing a further 1.8-fold decrease in PHA content, did not abolish PHA accumulation. Further proteome analysis revealed quinoprotein alcohol dehydrogenases PedE and PedH as potential monomer suppliers, but when these were deleted, the PHA level remained at 2.2-14.8% CDW depending on the fatty acid used and whether nitrogen limitation was applied. Therefore, it is likely that some other non-specific dehydrogenases supply monomers for PHA synthesis, demonstrating the redundancy of PHA metabolism. KEY POINTS: • β-oxidation intermediates are converted to PHA monomers by hydratases PhaJ1, PhaJ4 and MaoC in Pseudomonas putida KT2440. • When these are deleted, the PHA level decreases, but it is not abolished. • PHA non-specific enzyme(s) also contributes to PHA metabolism in KT2440.

Keywords: Enzyme redundancy; Polyhydroxyalkanoate; Pseudomonas putida; β-oxidation pathway.

MeSH terms

  • Fatty Acids / metabolism
  • Oxidation-Reduction
  • Oxidoreductases / metabolism
  • Polyhydroxyalkanoates* / metabolism
  • Pseudomonas putida* / metabolism

Substances

  • Polyhydroxyalkanoates
  • Fatty Acids
  • Oxidoreductases