Luminescence nanothermometry using a trivalent lanthanide co-doped perovskite

RSC Adv. 2023 Jan 18;13(5):2939-2948. doi: 10.1039/d2ra05935e.

Abstract

This study investigates in detail the laser-mediated upconversion emission and temperature-sensing capability of (Ca0.99-a Yb0.01Er a )TiO3. Samples were prepared at different concentrations to observe the effect of erbium on upconversion while increasing its concentration and keeping all the other parameters constant. Doping is a widespread technological process which involves incorporating an element called a dopant in a lower ratio to the host lattice to derive hybrid materials with desired properties. The (Ca0.99-a Yb0.01Er a )TiO3 perovskite nanoparticles were synthesized via a sol-gel technique. The frequency upconversion was performed using a 980 nm laser diode excitation source. X-ray diffractometry (XRD) confirmed that the synthesized samples are crystalline in nature and have an orthorhombic structure. The temperature-sensing ability was examined using the fluorescence intensity ratio (FIR) algorithm of two emission bands (2H11/24I15/2 and 4S3/24I15/2) of the Er3+ ion. Temperature-dependent upconversion luminescence is observed over a broad temperature range of 298-623 K. The maximum sensor sensitivity obtained is 6.71 × 10-3 K-1 at 110°.