Benchmarking fundamental gap of Sc2C(OH)2 MXene by many-body methods

J Chem Phys. 2023 Feb 7;158(5):054703. doi: 10.1063/5.0140315.

Abstract

Sc2C(OH)2 is a prototypical non-magnetic member of MXenes, a promising transition-metal-based 2D material family, with a direct bandgap. We provide here a benchmark of its fundamental gap Δ obtained from many-body GW and fixed-node diffusion Monte Carlo methods. Both approaches independently arrive at a similar value of Δ ∼ 1.3 eV, suggesting the validity of both methods. Such a bandgap makes Sc2C(OH)2 a 2D semiconductor suitable for optoelectronic applications. The absorbance spectra and the first exciton binding energy (0.63 eV), based on the Bethe-Salpeter equation, are presented as well. The reported results may serve to delineate experimental uncertainties and enable selection of reasonable approximations such as density functional theory functionals, for use in modeling of related MXenes.