Engineering Pt/Co/AlO x heterostructures to enhance the Dzyaloshinskii-Moriya interaction

J Phys Condens Matter. 2023 Feb 16;35(14). doi: 10.1088/1361-648X/acba73.

Abstract

The study of interfacial Dzyaloshinskii-Moriya interaction (DMI) in perpendicularly magnetized structurally asymmetric heavy metal/ferromagnet multilayer systems is of high importance due to the formation of chiral magnetic textures in the presence of DMI. Here, we report the impact of cobalt oxidation at the Co/AlOxinterface in Pt/Co/AlOxtrilayer structures on the DMI by varying the post-growth annealing time, Al thickness and substrate. To quantify DMI we employed magneto-optical imaging of the asymmetric domain wall expansion, hysteresis loop shift, and spin-wave spectroscopy techniques. We further correlated the Co oxidation with low-temperature Hall effect measurements and x-ray photoelectron spectroscopy. Our results emphasize the importance of full characterization of the magnetic films that could be used for magnetic random access memory technologies when subjected to the semiconductor temperature processing conditions, as the magnetic interactions are critical for device performance and can be highly sensitive to oxidation and other effects.

Keywords: Dzyaloshinskii–Moriya interaction; Hall shift; microscopy; spin orbit coupling.