Light-Amplified CISS-Based Hybrid QD-DNA Impedimetric Device for DNA Hybridization Detection

Anal Chem. 2023 Feb 21;95(7):3656-3665. doi: 10.1021/acs.analchem.2c04608. Epub 2023 Feb 7.

Abstract

We design and build a novel light-amplified electrochemical impedimetric device based on the CISS effect to detect DNA hybridization using a hybrid quantum dot (QD)-DNA monolayer on a ferromagnetic (FM) Ni/Au thin film for the first time. Using spin as a detection tool, the current research considers the chiral-induced spin selectivity (CISS) phenomenon. After injecting a spin current into the QD-DNA system with opposite polarities (up and down), the impedimetric device revealed a large differential change in the charge-transfer resistance (ΔRct) of ∼100 ohms for both spins. Nearly, a threefold increase in the ΔRct value to ∼270 ohms is observed when light with a wavelength of 532 nm is illuminated on the sample, owing to the amplified CISS effect. The yield of spin polarization as extracted from the Nyquist plot increases by a factor of more than 2 when exposed to light, going from 6% in the dark to 13% in the light. The impact of light on the CISS effect was further corroborated by the observation of the spin-dependent asymmetric quenching of photoluminescence (PL) in the same hybrid system. These observations are absent in the case of a noncomplementary QD-DNA system due to the absence of a helical structure in DNA. Based on this, we develop a spin-based DNA hybridization sensor and achieve a limit of detection of 10 fM. These findings open a practical path for the development of spin-based next-generation impedimetric DNA sensors and point-of-care devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / chemistry
  • Nucleic Acid Hybridization
  • Quantum Dots*

Substances

  • DNA