The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping

Cereb Cortex. 2023 May 24;33(11):7163-7174. doi: 10.1093/cercor/bhad028.

Abstract

Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.

Keywords: T1w/T2w ratio; delay discounting; intracortical myelin; regional homogeneity; resting-state fMRI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / diagnostic imaging
  • Gray Matter / diagnostic imaging
  • Humans
  • Impulsive Behavior
  • Magnetic Resonance Imaging* / methods
  • Myelin Sheath*
  • Young Adult