Erythrobacter aurantius sp. nov., isolated from intertidal seawater in Taizhou

Int J Syst Evol Microbiol. 2022 Dec;72(12). doi: 10.1099/ijsem.0.005616.

Abstract

A Gram-stain-negative, aerobic, chemoheterotrophic and rod-shaped strain, designated as C5T, was isolated from intertidal surface seawater in Taizhou, Zhejiang Province, PR China and characterized using a polyphasic taxonomic approach. Strain C5T could produce carotenoids and bacteriochlorophyll a. Growth was observed at 20-45 °C, at pH 6.0-9.0 and with 0-8.0 % (w/v) NaCl. The 16S rRNA gene sequence identity analysis revealed that strain C5T was the most closely related to Qipengyuania nanhaisediminis CGMCC 1.7715T (98.8%) and Erythrobacter litoralis DSM 8509T (98.7%). The phylogenetic reconstruction based on core genes demonstrated that strain C5T was clustered into the members of the genus Erythrobacter. The average nucleotide identity and digital DNA-DNA hybridization values between strain C5T and Erythrobacter type strains were lower than 76 and 25 %, respectively. The predominant and minor respiratory quinones were identified as ubiquinone-10 and ubiquinone-9. The major fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and iso-C18 : 0. Polar lipids included phosphatidylethanolamine, phosphatidylglycerol, a glycosphingolipid and an unidentified aminolipid. Based on the genetic, chemotaxonomic and phenotypic data, strain C5T is concluded to represent a novel species in the genus Erythrobacter, for which the name Erythrobacter aurantius sp. nov. is proposed. The type strain is C5T (=MCCC 1K05108T=KCTC 92307T).

Keywords: Erythrobacter aurantius; aerobic anoxygenic phototrophic bacteria; comparative genomics; polyphasic taxonomy.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Phospholipids / chemistry
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Seawater
  • Sequence Analysis, DNA
  • Sphingomonadaceae*

Substances

  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • DNA, Bacterial