Coupled Spin-Valley, Rashba Effect, and Hidden Spin Polarization in WSi2N4 Family

J Phys Chem Lett. 2023 Feb 16;14(6):1494-1503. doi: 10.1021/acs.jpclett.2c03108. Epub 2023 Feb 6.

Abstract

Using first-principles calculations, we report the electronic properties with a special focus on the band splitting in the WSi2N4 class of materials. Due to the broken inversion symmetry and strong spin-orbit coupling, we detect coupled spin-valley effects at the corners of the first Brillouin zone (BZ). Additionally, we observe cubically and linearly split bands around the Γ and M points, respectively. The in-plane mirror symmetry (σh) and reduced symmetry of the arbitrary k-point, enforce the persistent spin textures (PST) to occur in full BZ. We induce the Rashba splitting by breaking the σh through an out-of-plane external electric field (EEF). The inversion asymmetric site point group of the W atom introduces the hidden spin polarization in centrosymmetric layered bulk counterparts. Low energy k.p models demonstrate that the PST along the M-K line is robust to EEF and layer thickness, making them suitable for applications in spintronics and valleytronics.