Gene Expression Profile Changes in the Stimulated Rat Brain Cortex After Repetitive Transcranial Magnetic Stimulation

Brain Neurorehabil. 2022 Sep 30;15(3):e27. doi: 10.12786/bn.2022.15.e27. eCollection 2022 Nov.

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is gaining popularity as a research tool in neuroscience; however, little is known about its molecular mechanisms of action. The present study aimed to investigate the rTMS-induced transcriptomic changes; we performed microarray messenger RNA, micro RNA, and integrated analyses to explore these molecular events. Eight adult male Sprague-Dawley rats were subjected to a single session of unilateral rTMS at 1 Hz (n = 4) or sham (n = 4). The left hemisphere was stimulated for 20 minutes. To evaluate the cumulative effect of rTMS, eight additional rats were assigned to the 1-Hz (n = 4) or sham (n = 4) rTMS groups. The left hemisphere was stimulated for 5 consecutive days using the same protocol. Microarray analysis revealed differentially expressed genes in the rat cortex after rTMS treatment. The overrepresented gene ontology categories included the positive regulation of axon extension, axonogenesis, intracellular transport, and synaptic plasticity after repeated sessions of rTMS. A single session of rTMS primarily induced changes in the early genes, and several miRNAs were significantly related to the mRNAs. Future studies are required to validate the functional significance of selected genes and refine the therapeutic use of rTMS.

Keywords: Neuronal Plasticity; Recovery of Function; Transcranial Magnetic Stimulation.