Changes in gene expression and enzyme activity related to glucose metabolism in the livers of Brandt's voles (Lasiopodomys brandtii) exposed to hypoxia

Comp Biochem Physiol A Mol Integr Physiol. 2023 May:279:111384. doi: 10.1016/j.cbpa.2023.111384. Epub 2023 Feb 2.

Abstract

Brandt's vole (Lasiopodomys brandtii) is a hypoxia-tolerant species, and the metabolic characteristics of hypoxia-tolerant species have become a focus of recent research. However, insights into the anaerobic and aerobic metabolism of the livers of Brandt's voles under hypoxia remain limited. In this study, Brandt's voles and hypoxia-intolerant Kunming mice (Mus musculus, control species) were exposed to hypoxia conditions (Brandt's voles, 10% and 7.5% O2; Kunming mice, 10% O2) for 24 h, and changes in gene expression and enzyme activity related to anaerobic and aerobic metabolism in the livers were evaluated. Phosphofructokinase 1 (PFK1), phosphofructokinase 2 (PFK2), pyruvate kinase muscle (PKM), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) related to anaerobic metabolism in the livers of Brandt's voles were increased under 7.5% O2. Regarding gene expression and enzyme activity for aerobic metabolism in Brandt's voles under 7.5% and 10% O2, pyruvate dehydrogenase kinase 1 (PDK1) expression was up-regulated, and succinate dehydrogenase (SDH) activity was decreased. In the livers of Kunming mice, gene expression related to anaerobic and aerobic metabolism was increased at the late stage of 10% O2, and SDH activity was enhanced at 6 h and reduced at 18 h. In addition, PFK1,PKM, PDK1 expression and SDH activity in Brandt's voles were significantly correlated with HIF-1a expression. PFK1, PKM, LDHand PDK1 expression in Kunming mice were significantly correlated with HIF-1a expression. These findings indicate that the livers of Brandt's voles have a certain tolerance to hypoxia, and metabolic changes play important roles in hypoxia tolerance.

Keywords: Aerobic metabolism; Anaerobic metabolism; Brandt's voles; Hypoxia exposure; Livers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arvicolinae* / physiology
  • Gene Expression
  • Glucose / metabolism
  • Liver*
  • Mice

Substances

  • Glucose

Supplementary concepts

  • Kunming mice