Widely targeted volatileomics analysis reveals the typical aroma formation of Xinyang black tea during fermentation

Food Res Int. 2023 Feb:164:112387. doi: 10.1016/j.foodres.2022.112387. Epub 2022 Dec 29.

Abstract

Xinyang black tea (XYBT) is characterized by the honey sugar-like aroma which is produced during the fermentation process. However, the formation of this typical aroma is still unclear. We here performed widely targeted volatileomics analysis combined with GC-MS and detected 116 aroma active compounds (AACs) with OAV > 1. These AACs were mainly divided into terpenoids, pyrazine, volatile sulfur compounds, esters, and aldehydes. Among them, 25 significant differences AACs (SDAACs) with significant differences in fermentation processes were identified, comprising phenylacetaldehyde, dihydroactinidiolide, α-damascenone, β-ionone, methyl salicylate, and so forth. In addition, sensory descriptions and partial least squares discriminant analysis demonstrated that phenylacetaldehyde was identified as the key volatile for the honey sugar-like aroma. We further speculated that phenylacetaldehyde responsible for the aroma of XYBT was probably produced from the degradation of L-phenylalanine and styrene. In conclusion, this study helps us better understand the components and formation mechanism of the honey sugar-like aroma of XYBT, providing new insight into improving the processing techniques for black tea quality.

Keywords: Aromatic active compounds; Honey sugar-like aroma; Odor activity value; Phenylacetaldehyde; Widely targeted volatilomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Camellia sinensis*
  • Fermentation
  • Odorants / analysis
  • Olfactometry / methods
  • Sugars
  • Tea
  • Volatile Organic Compounds* / analysis

Substances

  • Tea
  • phenylacetaldehyde
  • Volatile Organic Compounds
  • Sugars