CCPG1 recognizes endoplasmic reticulum luminal proteins for selective ER-phagy

Mol Biol Cell. 2023 Apr 1;34(4):ar29. doi: 10.1091/mbc.E22-09-0432. Epub 2023 Feb 3.

Abstract

The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy*
  • Carrier Proteins / metabolism
  • Cell Cycle Proteins / metabolism
  • Endoplasmic Reticulum / metabolism
  • Endoplasmic Reticulum Stress*
  • Homeostasis
  • Proteins / metabolism

Substances

  • Carrier Proteins
  • Proteins
  • Cell Cycle Proteins