Low-Temperature Resistant Stretchable Micro-Supercapacitor Based on 3D Printed Octet-Truss Design

Small. 2023 Jun;19(23):e2207634. doi: 10.1002/smll.202207634. Epub 2023 Feb 2.

Abstract

Recently, stretchable micro-supercapacitors (MSCs) that can be easily integrated into electronic devices have attracted research and industrial attentions. In this work, three-dimensional (3D) stretchable MSCs with an octet-truss electrode (OTE) design have been demonstrated by a rapid digital light processing (DLP) process. The 3D-printed electrode structure is beneficial for electrode-electrolyte interface formation and consequently increases the number of ions adsorbed on the electrode surface. The designed MSCs can achieve a high capacitance as ≈74.76 mF cm-3 under 1 mA cm-3 at room temperature even under a high mechanical deformation, and can achieve 19.53 mF cm-3 under 0.1 mA cm-3 at a low temperature (-30 °C). Moreover, finite element analysis (FEA) reveals the OTE structure provides 8 times more contact area per unit volume at the electrode-electrolyte interface compared to the traditional interdigital electrode (IDE). This work combines structural design and 3D printing techniques, which provides new insights into highly stretchable MSCs for next-generation electronic devices.

Keywords: 3D printing; digital light processing; micro-supercapacitors; stretchable devices.