The effects of urban land use on energy-related CO2 emissions in China

Sci Total Environ. 2023 Apr 20:870:161873. doi: 10.1016/j.scitotenv.2023.161873. Epub 2023 Jan 31.

Abstract

Land use change caused by urbanization is widely believed to be the primary way human activities affect energy use and, thus, CO2 emissions (CEs) in China. However, there is a limited understanding of the role of land use with detailed categories in energy-related CEs is still absent. This paper aims to narrow the knowledge gap using multi-dimension metrics, including land use scale, mixture, and intensity. These metrics were derived from three years of sequential POI data. A GWR analysis was carried out to examine the associations between land use change and energy-related CEs. Our results show that (1) the scale of most land use types exerted a bidirectional effect on CEs, demonstrating apparent spatiotemporal heterogeneity; (2) land use mixture of mature city agglomerations had a significant suppressive effect on CEs, suggesting mixed land use be advocated in the urbanization process; (3) Land use intensity had a bi-directional association with CEs in most cities, but its adverse effect gradually spread from the west to the northeast. Therefore, systematically regulating land transaction to control land scale, appropriately interplanting biofuel plants, and utilizing renewable energy are encouraged to reduce energy footprints and mitigate CEs in China. The findings and conclusions of this paper enhance our knowledge on the relationship between land use and CEs and present the scientific basis for policy-making in building low-carbon cities in the context of rapidly urbanizing China.

Keywords: Carbon emissions; China; Detailed land use categories; Intensity; Mixture.