Ultrahigh-resolution computed tomography of the cervical spine without dose penalty employing a cadmium-telluride photon-counting detector

Eur J Radiol. 2023 Mar:160:110718. doi: 10.1016/j.ejrad.2023.110718. Epub 2023 Jan 27.

Abstract

Purpose: This cadaveric study compared image quality between a third-generation dual-source CT scanner with energy-integrating detector technology (EID) and a first-generation CT system employing a photon-counting detector (PCD) for the cervical spine in ultrahigh-resolution mode.

Methods: The cervical spine of eight formalin-fixed full-body cadaveric specimens was scanned with both CT systems using 140 kVp scan protocols matched for CTDIvol (full-dose; low-dose; ultralow-dose; 10 mGy; 3 mGy; 1 mGy). Images were reconstructed with 1 mm slice thickness and 0.5 mm increment. Three radiologists rated overall subjective image quality based on an equidistant five-point scale with the intraclass correlation coefficient (ICC) calculated for assessment of interobserver reliability. Contrast-to-noise ratios were calculated individually for bone (CNRbone) and muscle tissue (CNRmuscle) to provide objective criteria of image analysis.

Results: Subjective image quality, as well as CNRbone, and CNRmuscle were each superior for PCD-CT compared to EID-CT among dose-matched scan protocol pairs (all p < 0.05). Between full-dose EID-CT and low-dose PCD-CT, subjective image quality was equal (p = 0.903), while superior quantitative results regarding the latter were ascertained (both p < 0.001). Similarly, objective analysis determined higher CNRbone, and CNRmuscle in ultralow-dose PCD-CT compared to low-dose EID-CT (both p < 0.001), while readers considered the image quality of the respective studies comparable (p > 0.99). Interobserver reliability was good, denoted by an ICC of 0.861 (95 % confidence interval: 0.788 - 0.914; p < 0.001).

Conclusions: In cervical spine examinations, both subjective and objective image quality of PCD-CT were superior to EID-CT in comparison of scan protocols with corresponding dose levels, suggesting potential for significantly reducing the radiation exposure without compromising image quality.

Keywords: Cervical spine; Dose reduction; Photon-counting CT; Spatial resolution.

MeSH terms

  • Cadaver
  • Cadmium*
  • Cervical Vertebrae / diagnostic imaging
  • Humans
  • Phantoms, Imaging
  • Reproducibility of Results
  • Tomography, X-Ray Computed* / methods

Substances

  • Cadmium