An Ultrahigh Efficiency Excitonic Micro-LED

Nano Lett. 2023 Mar 8;23(5):1680-1687. doi: 10.1021/acs.nanolett.2c04220. Epub 2023 Feb 2.

Abstract

High efficiency micro-LEDs, with lateral dimensions as small as one micrometer, are desired for next-generation displays, virtual/augmented reality, and ultrahigh-speed optical interconnects. The efficiency of quantum well LEDs, however, is reduced to negligibly small values when scaled to such small dimensions. Here, we show such a fundamental challenge can be overcome by developing nanowire excitonic LEDs. Harnessing the large exciton oscillator strength of quantum-confined nanostructures, we demonstrate a submicron scale green-emitting LED having an external quantum efficiency and wall-plug efficiency of 25.2% and 20.7%, respectively, the highest values reported for any LEDs of this size to our knowledge. We established critical factors for achieving excitonic micro-LEDs, including the epitaxy of nanostructures to achieve strain relaxation, the utilization of semipolar planes to minimize polarization effects, and the formation of nanoscale quantum-confinement to enhance electron-hole wave function overlap. This work provides a viable path to break the efficiency bottleneck of nanoscale optoelectronics.

Keywords: GaN; display; micro-LED; molecular beam epitaxy; nanowire.