Exosomal HSP90 induced by remote ischemic preconditioning alleviates myocardial ischemia/reperfusion injury by inhibiting complement activation and inflammation

BMC Cardiovasc Disord. 2023 Feb 1;23(1):58. doi: 10.1186/s12872-023-03043-y.

Abstract

Background/aims: The activation of the complement system and subsequent inflammatory responses are important features of myocardial ischemia/reperfusion (I/R) injury. Exosomes are nanoscale extracellular vesicles that play a significant role in remote ischemic preconditioning (RIPC) cardioprotection. The present study aimed to test whether RIPC-induced plasma exosomes (RIPC-Exo) exert protective effects on myocardial I/R injury by inhibiting complement activation and inflammation and whether exosomal heat shock protein 90 (HSP90) mediates these effects.

Methods: Rat hearts underwent 30 min of coronary ligation followed by 2 h of reperfusion. Plasma exosomes were isolated from RIPC rats and injected into the infarcted myocardium immediately after ligation. Sixty rats were randomly divided into Sham, I/R, I/R + RIPC-Exo (50 µg/µl), and RIPC-Exo + GA (geldanamycin, 1 mg/kg, administration 30 min before ligation) groups. Cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB), infarct size, the expression of HSP90, complement component (C)3, C5a, c-Jun N-terminal kinase (JNK), interleukin (IL)-1β, tumor necrosis factor (TNF)-alpha and intercellular adhesion molecule -1 (ICAM-1) were assessed.

Results: RIPC-Exo treatment significantly reduced I/R-induced cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB) and infarct size. These beneficial effects were accompanied by decreased C3 and C5a expression, decreased inflammatory factor levels (IL-1β, TNF-α, and ICAM-1), decreased JNK and Bax, and increased Bcl-2 expression. Meanwhile, the expression of HSP90 in the exosomes from rat plasma increased significantly after RIPC. However, treatment with HSP90 inhibitor GA significantly reversed the cardioprotection of RIPC-Exo, as well as activated complement component, JNK signalling and inflammation, indicating that HSP90 in exosomes isolated from the RIPC was important in mediating the cardioprotective effects during I/R.

Conclusion: Exosomal HSP90 induced by RIPC played a significant role in cardioprotection against I/R injury, and its function was in part linked to the inhibition of the complement system, JNK signalling and local and systemic inflammation, ultimately alleviating I/R-induced myocardial injury and apoptosis by the upregulation of Bcl-2 expression and the downregulation of proapoptotic Bax.

Keywords: Complement system; Exosomes; HSP90; Inflammation; Remote ischemic preconditioning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Complement Activation
  • Infarction
  • Inflammation
  • Intercellular Adhesion Molecule-1
  • Ischemic Preconditioning*
  • Ischemic Preconditioning, Myocardial*
  • Myocardial Reperfusion Injury* / pathology
  • Rats
  • Tumor Necrosis Factor-alpha
  • bcl-2-Associated X Protein

Substances

  • Intercellular Adhesion Molecule-1
  • bcl-2-Associated X Protein
  • Tumor Necrosis Factor-alpha