Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium

Opt Lett. 2023 Feb 1;48(3):803-806. doi: 10.1364/OL.474808.

Abstract

We have experimentally demonstrated the realization of an instantaneously reconfigurable Lieb photonic lattice with a flatband in a three-level Λ-type rubidium atomic configuration. Such a coherently controllable Lieb photonic lattice is optically induced by a coupling field possessing a spatially periodic intensity distribution (generated via a spatial light modulator) under the condition of electromagnetically induced transparency. The incident weak Gaussian probe field can experience discrete diffraction and the observed probe beam at the output surface of the medium exhibits the same Lieb pattern, verifying the formation of the refractive index with a Lieb profile inside the atomic vapor cell. The potential wells and the band structure of the Lieb photonic lattice can be effectively manipulated by easily tuning the frequency of the involved laser beams. The current work can promisingly pave the way for exploring the exotic dynamics as well as tunable photonic devices in Lieb photonic lattices.