Engineering interface structures for heterojunction photocatalysts

Phys Chem Chem Phys. 2023 Feb 8;25(6):4388-4407. doi: 10.1039/d2cp05281d.

Abstract

Solar photocatalysis is the most ideal solution to global energy concerns and environmental deterioration nowadays. The heterojunction combination has become one of the most successful and effective strategies to design and manufacture composite photocatalysts. Heterojunction structures are widely documented to markedly improve the photocatalytic behavior of materials by enhancing the separation and transfer of photogenerated charges, widening the light absorption range, and broadening redox potentials, which are attributed to the presence of both build-in electric fields at the interface of two different materials and the complementarity between different electron structures. So far, a large number of heterojunction photocatalytic materials have been reported and applied for water splitting, reduction of carbon dioxide and nitrogen, environmental cleaning, etc. This review outlines the recent accomplishments in the design and modification of interface structures in heterojunction photocatalysts, aiming to provide some useful perspectives for future research in this field.

Publication types

  • Review