The non-selective Rho-kinase inhibitors Y-27632 and Y-33075 decrease contraction but increase migration in murine and human hepatic stellate cells

PLoS One. 2023 Jan 31;18(1):e0270288. doi: 10.1371/journal.pone.0270288. eCollection 2023.

Abstract

Background: The Rho-kinase ROCK II plays a major role in the activation of hepatic stellate cells (HSC), which are the key profibrotic and contractile cells contributing to the development of chronic liver disease. Inhibition of ROCK II ultimately blocks the phosphorylation of the myosin light chain (MLC) and thus inhibits stress fibre assembly and cell contraction. We investigated the effects of the ROCK inhibitors Y-33075 as well as Y-27632 in murine and human hepatic stellate cells.

Methods: Primary isolated HSC from FVB/NJ mice and the immortalized human HSC line TWNT-4 were culture-activated and incubated with Y-27632 and Y-33075 (10nM to 10μM) for 24h. Protein expression levels were analyzed by Western Blots and transcriptional levels of pro-fibrotic markers and proliferative markers were evaluated using real-time qPCR. Migration was investigated by wound-healing assay. Proliferation was assessed by BrdU assay. Contraction of HSC was measured using 3D collagen matrices after incubation with Y-27632 or Y-33075 in different doses.

Results: Both Rho-kinase inhibitors, Y-27632 and Y-33075, reduced contraction, fibrogenesis and proliferation in activated primary mouse HSC (FVB/NJ) and human HSC line (TWNT-4) significantly. Y-33075 demonstrated a 10-times increased potency compared to Y-27632. Surprisingly, both inhibitors mediated a substantial and unexpected increase in migration of HSC in FVB/NJ.

Conclusion: ROCK inhibition by the tested compounds decreased contraction but increased migration. Y-33075 proved more potent than Y27632 in the inhibition of contraction of HSCs and should be further evaluated in chronic liver disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Hepatic Stellate Cells / metabolism
  • Humans
  • Mice
  • Signal Transduction*
  • rho-Associated Kinases* / metabolism

Substances

  • rho-Associated Kinases
  • Y 27632
  • Y-33075

Grants and funding

This study was supported by the German Research Foundation (DFG) project ID 403224013 – SFB 1382 (A09), by the German Federal Ministry of Education and Research (BMBF) for the DEEP-HCC project and by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) for the ENABLE cluster project and by Eurostars (Grant ID 12350). The MICROB-PREDICT (project ID 825694), DECISION (project ID 847949), GALAXY (project ID 668031), LIVERHOPE (project ID 731875) and IHMCSA (project ID 964590) projects have received funding from the European Union’s Horizon 2020 research and innovation program. The manuscript reflects only the authors’ views, and the European Commission is not responsible for any use that may be made of the information it contains. The funders had no influence on study design, data collection and analysis, decision to publish, or preparation of the manuscript.