Making Heterometallic Metal-Metal Bonds in Keggin-Type Polyoxometalates by a Six-Electron Reduction Process

Inorg Chem. 2023 Feb 13;62(6):2494-2502. doi: 10.1021/acs.inorgchem.2c03769. Epub 2023 Jan 30.

Abstract

Polyoxometalates (POMs) represent a promising class of molecular electron reservoirs. However, their multielectron reduction gives rise to intricate physical-chemical phenomena that must be fully understood for their future use in energy-storage devices. Herein, we show that bulk electrolysis of the archetypal Keggin-type POM [Si(WVI2MoVIO10)(WVI3O10)3]4- in aqueous solution leads to the six-electron-reduced derivative [Si(WIV2MoIVO7(H2O)3)(WVI3O10)3]4- (notated SiW11Mo-VI') in which the mixed-metal triad acts as a storage unit for six electrons and six protons. X-ray diffraction analysis and multinuclear NMR (183W and 95Mo) studies reveal that this electron-rich species represents the first example of POMs containing heterometallic metal-metal bonds between addenda centers. This electron-rich POM can be further reduced through multielectronic events, while its full oxidation restores the structure of the oxidized parent ion. Remarkably, the formation of SiW11Mo-VI' results from a fast clustering process compared to that observed for the entirely W-based analogue, revealing that the formation of metal-metal bonds in the mixed-metal Mo/W POM is facilitated because the reaction rate is not limited by a slow disproportionation step. Last, we evaluate the supramolecular properties of SiW11Mo-VI' using a method based on the cloud-point measurement of a nonionic surfactant. This investigation demonstrates that the clustering process has dramatic consequences on the solution behavior of the POM, canceling its superchaotropic character due to a local structuring effect of the hydration shell. These fundamental results pave the way for applications using the massive electron-storage properties of mixed-metal POMs.