The influence of a probiotic/prebiotic supplement on microbial and metabolic parameters of equine cecal fluid or fecal slurry in vitro

J Anim Sci. 2023 Jan 3:101:skad034. doi: 10.1093/jas/skad034.

Abstract

The microbes that reside within the equine hindgut create a complex and dynamic ecosystem. The equine hindgut microbiota is intimately associated with health and, as such, represents an area which can be beneficially modified. Synbiotics, supplements that combine probiotic micro-organisms with prebiotic ingredients, are a potential means of influencing the hindgut microbiota to promote health and prevent disease. The objective of the current study was to evaluate the influence of an equine probiotic/prebiotic supplement on characteristics of the microbiota and metabolite production in vitro. Equine cecal fluid and fecal material were collected from an abattoir in QC, CAN. Five hundred milliliters of cecal fluid was used to inoculate chemostat vessels maintained as batch fermenters (chemostat cecal, N = 11) with either 0 g (control) or 0.44 g of supplement added at 12 h intervals. One hundred milliliters of cecal fluid (anaerobic cecal, N = 15) or 5% fecal slurry (anaerobic fecal, N = 6) were maintained in an anaerobic chamber with either 0 g (control) or 0.356 g of supplement added at the time of vessel establishment. Samples were taken from vessels at vessel establishment (0), 24, or 48 h of incubation. Illumina sequencing of the V4 region of the 16S rRNA gene and bioinformatics were performed for microbiome analysis. Metabolite data was obtained via NMR spectroscopy. All statistical analyses were run in SAS 9.4. There was no effect of treatment at 24 or 48h on alpha or beta diversity indices and limited taxonomic differences were noted. Acetate, propionate, and butyrate were higher in treated compared to untreated vessels in all methods. A consistent effect of supplementation on the metabolic profile with no discernable impact on the microbiota of these in vitro systems indicates inoculum microbe viability and a utilization of the provided fermentable substrate within the systems. Although no changes within the microbiome were apparent, the consistent changes in metabolites indicates a potential prebiotic effect of the added supplement and merits further exploration.

Keywords: cecal; equine; in vitro; metabolome; microbiome; synbiotic.

Plain language summary

This research investigated the impact of an equine prebiotic/probiotic supplement on the equine cecal microbiota by utilizing an in vitro fermentation system. By using two types of fermentation systems and inocula obtained using a fecal slurry and cecal contents, we evaluated how the addition of the supplement changed the microbial function over the 48 h experimental period. Although the supplement did drastically influence the production of volatile fatty acids produced by the microbes in all systems, the microbial composition did not change. Thus, indicating the supplement did not, in this in vitro context, provide probiotic or prebiotic potential. However, the systems remained viable and the microbes actively metabolized substrate for the duration of the experiment.

MeSH terms

  • Animals
  • Feces / chemistry
  • Fermentation
  • Health Promotion
  • Horses
  • Microbiota*
  • Prebiotics
  • Probiotics* / pharmacology
  • RNA, Ribosomal, 16S
  • Synbiotics*

Substances

  • Prebiotics
  • RNA, Ribosomal, 16S

Grants and funding