Ca2+-Facilitated Adhesion of Bacteria on the Na-Montmorillonite Surface

ACS Omega. 2023 Jan 11;8(3):3385-3395. doi: 10.1021/acsomega.2c07260. eCollection 2023 Jan 24.

Abstract

The adhesion of bacteria on clay surfaces strongly affected their migration and distribution in soil and water. Bacterial adhesion experiments on the Na-montmorillonite (Na-MMT) surface were conducted to determine the role of Na-MMT in the bacterial adhesion process and to prove the validity of the isotherm and kinetic theory for the bacterial surface adhesion in the presence of Ca2+ ions. Batch adhesion experiments with bacteria on the Na-MMT surface were carried out with varying time frames, temperatures, bacterial concentrations, and Ca2+ ion concentrations. The adhesion capacity of Na-MMT significantly correlated with the Ca2+ ion concentration, temperature, time frame, and bacterial concentration when Ca2+ ions were present. The adhesion morphology of the bacteria onto the Na-MMT surface, observed through the zeta-potential and atomic force microscopy (AFM), additionally demonstrated that the bacterial adhesion onto the Na-MMT surface was dominated by the nonelectrostatic force.