Versatile Electronic Textile Enabled by a Mixed-Dimensional Assembly Strategy

Small. 2023 Apr;19(17):e2208134. doi: 10.1002/smll.202208134. Epub 2023 Jan 29.

Abstract

Electronic textiles (e-textiles) hold great promise for serving as next-generation wearable electronics owing to their inherent flexible, air-permeable, and lightweight characteristics. However, these e-textiles are of limited performance mainly because of lacking powerful materials combination. Herein, a versatile e-textile through a simple, high-efficiency mixed-dimensional assembly of 2D MXene nanosheets and 1D silver nanowires (AgNWs) are presented. The effective complementary actions of MXene and AgNWs endow the e-textiles with superior integrated performances including self-powered pressure sensing, ultrafast joule heating, and highly efficient electromagnetic interference (EMI) shielding. The textile-based self-powered smart sensor systems obtained through the screen-printed assembly of MXene-based supercapacitor and pressure sensor are flexible and lightweight, showing ultrahigh specific capacitance (2390 mF cm-2 ), robust areal energy density (119.5 µWh cm-2 ), excellent sensitivity (474.8 kPa-1 ), and low detection limit (1 Pa). Furthermore, the interconnected conductive MXene/AgNWs network enables the e-textile with ultrafast temperature response (10.4 °C s-1 ) and outstanding EMI shielding effectiveness of ≈66.4 dB. Therefore, the proposed mixed-dimensional assembly design creates a multifunctional e-textile that offers a practical paradigm for next-generation smart flexible electronics.

Keywords: Joule heating; MXene; electromagnetic interference shielding; multifunctional textiles; self-powered sensing.