Photodegradation behavior and mechanism of dibutyl phthalate in water under flood discharge atomization

Sci Total Environ. 2023 May 1:871:161822. doi: 10.1016/j.scitotenv.2023.161822. Epub 2023 Jan 25.

Abstract

Flood discharge atomization is a prevalent hydraulics phenomenon in reservoir scheduling operations, however, its effect on the migration and transformation behavior of pollutants has not been examined. In this study, the behaviors and mechanisms of the direct photodegradation of dibutyl phthalate (DBP) in atomized water and the indirect photodegradation of DBP in the presence of ferric ions and nitrate were investigated. The results showed that the photodegradation rate of DBP was accelerated under atomization conditions by sunlight irradiation. The photodegradation efficiency of DBP in the presence of ferric ions and nitrate under atomization conditions was increased by 2.20 times and 1.82 times compared with no-atomization conditions, respectively. The quencher experiments indicated that the main active species for DBP photodegradation in the presence of ferric ions were hydroxyl radicals (·OH) and superoxide radicals (·O2-) with atomization, while the main active species in the presence of nitrate were ·OH, ·O2- and electrons (e-). In addition, the differences were found in the photodegradation products and pathways of DBP between with and without atomization treatment. In the presence of ferric ions, the benzene ring of DBP was opened to produce fumaric acid, while phthalic acid bis(4-hydroxybutyl) ester was produced in the presence of nitrate under atomization conditions. The results of this study provide a scientific basis for assessing the effect of water conservancy projects on the migration and transformation behaviors of pollutants, which is of great theoretical significance and scientific value.

Keywords: Dibutyl phthalate; Flood discharging atomization; Photodegradation.