UPR/Titanium dioxide nanocomposite: Preparation, characterization and application in photon/neutron shielding

Appl Radiat Isot. 2023 Apr:194:110688. doi: 10.1016/j.apradiso.2023.110688. Epub 2023 Jan 21.

Abstract

The aim of present investigation is to fabricate TiO2 reinforced novel composites as an alternate nuclear radiation shields. Unsaturated polyester resin has been reinforced by the incorporation of different weight proportions of titanium dioxide (5, 10, 15 and 20 wt%) nanoparticles. Accordingly, mass and linear attenuation coefficients (μm & μ), half and tenth value layers (HVL & TVL), relaxation length (λ) and effective atomic numbers (Zeff) have been computed. Gamma ray transmission set up has been employed for the determination of experimental μm values and consistency of experimental outcomes has been compared with the induced results from WinXCom program and Geant4 simulation code. Moreover, discrepancy of fast neutron removal cross section with the increasing TiO2 content in the prepared composites has been studied. Additionally, structural properties in terms of XRD, SEM, RAMAN, FTIR and mechanical properties in terms of compressive strength have been analysed. The findings of this study revealed that the addition of TiO2 nanoparticles improved the mechanical, nuclear shielding and structural properties of composites. The best gamma ray shielding competency has been showed by the highest TiO2 addition (20%) composite. All in all, UPR + TiO2 composites have been identified as promising alternative radiation shielding candidates owning to their cost effectiveness, ease of processing, good dispersion and lightweightness.

Keywords: Experiment; Gamma ray attenuation; Geant4; Reinforced polymer composites; WinXCom.