Effects of sintering condition on giant dielectric and nonlinear current-voltage properties of Na1/2Y1/2Cu3Ti3.975Ta0.025O12 ceramics

Heliyon. 2023 Jan 14;9(1):e12946. doi: 10.1016/j.heliyon.2023.e12946. eCollection 2023 Jan.

Abstract

The effects of sintering conditions on the microstructure, giant dielectric response, and electrical properties of Na1/2Y1/2Cu3Ti3.975Ta0.025O12 (NYCTTaO) were studied. A single phase of Na1/2Y1/2Cu3Ti4O12 and a high density (>98.5%) were obtained in the sintered NYCTTaO ceramics. First-principles calculations were used to study the structure of the NYCTTaO. Insulating grain boundaries (i-GBs) and semiconducting grains (semi-Gs) were studied at different temperatures using impedance and admittance spectroscopies. The conduction activation energies of the semi-Gs and i-GBs were Eg ≈ 0.1 and Egb ≈ 0.6 eV, respectively. A large dielectric constant (ε' ≈ 2.43-3.89 × 104) and low loss tangent (tanδ ≈ 0.046-0.021) were achieved. When the sintering temperature was increased from 1070 to 1090 °C, the mean grain size slightly increased, while ε' showed the opposite tendency. Furthermore, the breakdown electric field (Eb) increases significantly. As the sintering time increased from 5 to 10 h, the mean grain size did not change, whereas ε' and Eb increased. Variations in the dielectric response and non-linear electrical properties were primarily described by the intrinsic (Egb) and extrinsic (segregation of Na-, Cu-, Ta-, and O-rich phases) properties of the i-GBs based on the internal barrier layer capacitor effect.

Keywords: First principle calculations; Giant dielectric properties; Maxwell−Wagner polarization; Microstructure; NYCTO.